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Orthogonal Set

* A set of vectors is called an orthogonal set if every

pair of distinct vectors in the set is orthogonal.
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By definition, a set with only one vector is

an orthogonal set.

* Reference: Chapter 7.2



Independent?

* Any orthogonal set of nonzero vectors is linearly
independent.

Let 8'={v,, v,, ..., v,} be an orthogonal set v, = 0 for
i=1,2,...,k

Assume ¢, C,, ..., ¢, make c;v, + C,v, + - + v, =0
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Orthonormal Set

* A set of vectors is called an orthonormal set if it is an
orthogonal set, and the norm of all the vectorsis 1
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A vector that has norm equal to 1 is called a unit vector.



Orthogonal Basis

* A basis that is an orthogonal (orthonormal) set is
called an orthogonal (orthonormal) basis

Orthogonal basis of R3
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Orthogonal Projection

* Orthogonal projection of a vector onto a line

V: any vector

u: any nonzero vector on £

w: orthogonal projection of
vonto £,w=cu
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Orthogonal Projection K

 Example:

Lisy=(1/2)x

=11 u-F2
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Orthogonal Basis  ¢=mm w=cu=

e Let S = {vy, vy, -+, Ui} be an orthogonal basis for a
subspace V, and let u be a vector in V.

U= CV1 + CUy + -+ C, Vg
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To find ¢;

U-v; = (v + Uy + o+ vy + -+ V) vy
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Example

* Example: 8’ ={v,, v,, v5} is an orthogonal basis for
323
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Let u = 2 and u = C1V] + C2V9y + C3V3.
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Orthogonal Basis

Let {uq, u,, -, Ui} be a basis of a subspace V. How to transform
{u{,u,, -+, u; } into an orthogonal basis {vy, v,, ***, Vi }?

Let {ui,us, - ,ur} be a basis for a subspace W of R"™. Define

Vi = Ui,
U2 - Vi
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Then {vy,va, -+ ,v;} is an orthogonal set of nonzero vectors such that
Span {V17V27“' 7V’i}:Span {111,112,"' 7ui}

for each i. So {v1,va,: - ,Vvg} is an orthogonal basis for .



Visualization

https://www.youtube.com/watch?v=Ys28-Yq21B8



